Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Frontiers in public health ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-1981267

ABSTRACT

Objective To observe changes in blood pressure (ΔBP) and explore potential risk factors for high ΔBP among nurses working in a negative pressure isolation ward (NPIW). Methods Data from the single-center prospective observational study were used. Based on a routine practice plan, female nurses working in NPIW were scheduled to work for 4 days/week in different shifts, with each day working continuously for either 5 or 6 h. BP was measured when they entered and left NPIW. Multivariable logistic regression was used to assess potential risk factors in relation to ΔBP ≥ 5 mm Hg. Results A total of 84 nurses were included in the analysis. The ΔBP was found to fluctuate on different working days;no significant difference in ΔBP was observed between the schedules of 5 and 6 h/day. The standardized score from the self-rating anxiety scale (SAS) was significantly associated with an increased risk of ΔBP ≥ 5 mm Hg (odds ratio [OR] = 1.12, 95% CI: 1.00–1.24). Working 6 h/day (vs. 5 h/day) in NPIW was non-significantly related to decreased risk of ΔBP (OR = 0.70), while ≥ 2 consecutive working days (vs. 1 working day) was non-significantly associated with increased risk of ΔBP (OR = 1.50). Conclusion This study revealed no significant trend for ΔBP by working days or working time. Anxiety was found to be significantly associated with increased ΔBP, while no <2 consecutive working days were non-significantly related to ΔBP. These findings may provide some preliminary evidence for BP control in nurses who are working in NPIW for Coronavirus Disease 2019 (COVID-19).

2.
Digit Health ; 8: 20552076221107894, 2022.
Article in English | MEDLINE | ID: covidwho-1902329

ABSTRACT

The COVID-19 pandemic has accelerated a long-term trend of smart hospital development. However, there is no consistent conceptualization of what a smart hospital entails. Few hospitals have genuinely reached being "smart," primarily failing to bring systems together and consider implications from all perspectives. Hospital Intelligent Twins, a new technology integration powered by IoT, AI, cloud computing, and 5G application to create all-scenario intelligence for health care and hospital management. This communication presented a smart hospital for all-scenario intelligence by creating the hospital Intelligent Twins. Intelligent Twins is widely involved in medical activities. However, solving the medical ethics, protecting patient privacy, and reducing security risks involved are significant challenges for all-scenario intelligence applications. This exploration of creating hospital Intelligent Twins that can be a worthwhile endeavor to assess how to inform evidence-based decision-making better and enhance patient satisfaction and outcomes.

3.
Commun Med (Lond) ; 2: 51, 2022.
Article in English | MEDLINE | ID: covidwho-1860437

ABSTRACT

The COVID-19 pandemic has resulted in nosocomial transmission of COVID-19 within hospitals and other healthcare settings such as residential homes and primary care settings. Here, we discuss how a 5G network can be used to reduce such infections.

4.
IEEE Access ; 8: 194158-194165, 2020.
Article in English | MEDLINE | ID: covidwho-1528297

ABSTRACT

COVID-19 is an emerging disease with transmissibility and severity. So far, there are no effective therapeutic drugs or vaccines for COVID-19. The most serious complication of COVID-19 is a type of pneumonia called 2019 novel coronavirus-infected pneumonia (NCIP) with about 4.3% mortality rate. Comparing to chest Digital Radiography (DR), it is recently reported that chest Computed Tomography (CT) is more useful to serve as the early screening and diagnosis tool for NCIP. In this study, aimed to help physicians make the diagnostic decision, we develop a machine learning (ML) approach for automated diagnosis of NCIP on chest CT. Different from most ML approaches which often require training on thousands or millions of samples, we design a few-shot learning approach, in which we combine few-shot learning with weakly supervised model training, for computerized NCIP diagnosis. A total of 824 patients are retrospectively collected from two Hospitals with IRB approval. We first use 9 patients with clinically confirmed NCIP and 20 patients without known lung diseases for training a location detector which is a multitask deep convolutional neural network (DCNN) designed to output a probability of NCIP and the segmentation of targeted lesion area. An experienced radiologist manually localizes the potential locations of NCIPs on chest CTs of 9 COVID-19 patients and interactively segments the area of the NCIP lesions as the reference standard. Then, the multitask DCNN is furtherly fine-tuned by a weakly supervised learning scheme with 291 case-level labeled samples without lesion labels. A test set of 293 patients is independently collected for evaluation. With our NCIP-Net, the test AUC is 0.91. Our system has potential to serve as the NCIP screening and diagnosis tools for the fight of COVID-19's endemic and pandemic.

5.
J Med Internet Res ; 22(11): e24505, 2020 11 24.
Article in English | MEDLINE | ID: covidwho-967773

ABSTRACT

BACKGROUND: The outbreak of COVID-19 has caused a continuing global pandemic. Hospitals are integral to the control and prevention of COVID-19; however, they are facing numerous challenges during the epidemic. OBJECTIVE: Our study aimed to introduce the practical experience of the design and implementation of a web-based COVID-19 service platform at a tertiary hospital in China as well as the preliminary results of the implementation. METHODS: The web-based COVID-19 service platform was deployed within the health care system of the Guangdong Second Provincial General Hospital and Internet Hospital; the function of the platform was to provide web-based medical services for both members of the public and lay health care workers. The focal functions of this system included automated COVID-19 screening, related symptom monitoring, web-based consultation, and psychological support; it also served as a COVID-19 knowledge hub. The design and process of each function are introduced. The usage data for the platform service were collected and are represented by three periods: the pre-epidemic period (December 22, 2019, to January 22, 2020, 32 days), the controlled period (January 23 to March 31, 2020, 69 days), and the postepidemic period (April 1 to June 30, 2020, 91 days). RESULTS: By the end of June 2020, 96,642 people had used the automated COVID-19 screening and symptom monitoring systems 161,884 and 7,795,194 times, respectively. The number of general web-based consultation services per day increased from 30 visits in the pre-epidemic period to 122 visits during the controlled period, then dropped to 73 visits in the postepidemic period. The psychological counseling program served 636 clients during the epidemic period. For people who used the automated COVID-19 screening service, 160,916 (99.40%) of the total users were classified in the no risk category. 464 (0.29%) of the people were categorized as medium to high risk, and 12 people (0.01%) were recommended for further COVID-19 testing and treatment. Among the 96,642 individuals who used the COVID-19 related symptoms monitoring service, 6696 (6.93%) were symptomatic at some point during the monitoring period. Fever was the most frequently reported symptom, with 2684/6696 symptomatic people (40.1%) having had this symptom. Cough and sore throat were also relatively frequently reported by the 6696 symptomatic users (1657 people, 24.7%, and 1622 people, 24.2%, respectively). CONCLUSIONS: The web-based COVID-19 service platform implemented at a tertiary hospital in China is exhibited to be a role model for using digital health technologies to respond to the COVID-19 pandemic. The digital solutions of automated COVID-19 screening, daily symptom monitoring, web-based care, and knowledge propagation have plausible acceptability and feasibility for complementing offline hospital services and facilitating disease control and prevention.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/therapy , Telemedicine/methods , COVID-19/epidemiology , China/epidemiology , Female , Humans , Male , SARS-CoV-2/isolation & purification , Tertiary Care Centers
SELECTION OF CITATIONS
SEARCH DETAIL